Novel High-Efficient Full Adder Cell Based on Bootstrapped Structure
نویسندگان
چکیده
This paper presents a comparative research of low-power and high-speed full adder cells which are based on XOR-XNOR algorithm. The adder cells are decomposed into small modules and all of them have an in-depth analysis. Several designs of each of them are implemented, optimized, simulated and analyzed separately. We also design a novel XORXNOR module built upon bootstrapped pass transistor logic use silicon on insulator (SOI) process with the characteristics of the full voltage swing at internal nodes and low shortcircuit current which helps in reducing the power-delay product (PDP) for high performance applications. Many different full adder cells are constructed with different XOR-XNOR modules. A realistic test environment with buffers and loads are used for simulation. All full adder cells were simulated by HSPICE based on 130 nm CMOS technology at 1.2 V supply voltages. Four sets of frequencies were operated: 25 MHz, 50 MHz, 100 MHz and 200 MHz with 50% duty cycle at four different load capacitances. A comprehensive comparison and analysis are also carried out to test the performance of the adders. Each of these cells shows different performances in terms of power consumption, speed, and PDP. The simulation results of this research are expected to help designers to select the appropriate full adder cell that satisfies their specific applications.
منابع مشابه
Novel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملPresenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate
Quantum-dot Cellular Automata (QCA) technology is a solution for implementation of the nanometer sized circuits and it can be a suitable replacement for CMOS. Similar to CMOS technology, designing the basic computational element such as adder with the QCA technology is regarded as one of the most important issues that extensive researches have been done about it. In this paper, a new eff...
متن کاملPropose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure
This paper proposes a full adder with minimum power consumption and lowloss with a central frequency of 1550nm using plasmonic Metal-Insulator-Metal (MIM)waveguide structure and rectangular cavity resonator. This full adder operates based onXOR and AND logic gates. In this full adder, the resonant wave composition of the firstand second modes has been used and we have ob...
متن کاملA Low Power Full Adder Cell based on Carbon Nanotube FET for Arithmetic Units
In this paper, a full adder cell based on majority function using Carbon-Nanotube Field-Effect Transistor (CNFET) technology is presented. CNFETs possess considerable features that lead to their wide usage in digital circuits design. For the design of the cell input capacitors and inverters are used. These kinds of design method cause a high degree of regularity and simplicity. The proposed des...
متن کامل